
OR/MS Today - June 2008

Software Review

Analytica 4.1
User examines modeling environment and takes a few
irreverent pokes at spreadsheets.
By Robert D. Brown III

"The purpose of computing is insight, not numbers."
- Richard Hamming
I experienced my first encounter with the now ubiquitous spreadsheet
nearly 20 years ago in engineering school. The introduction changed my
life. No longer did I have to write in arcane programming languages, wait
for programs to compile or wait hours in queue for printed results to find
out if my analytical procedures were working as conceived. The
spreadsheet seemed to resolve all my difficulties. Spreadsheets used
simple declarations, were easy to comment and provided documentation
to others on how a given model was intended to work. Compilations were
instantaneous, allowing me to see quickly whether my analytical
structure was working according to plan. For me and many other students
of engineering and analysis, Fortran was quickly becoming a thing of the
past.

But the real world has a way of throwing sand in one's gears. Leaving
engineering school exposed me to the world of complexity not easily
analogous to the clinical textbook problems of stylized ballistics
problems, cold air Brayton cycles and structural statics. Real problems
were often messier and took time to understand and simplify to a
requisite level. My Swiss Army spreadsheet began to dull. Often as I
worked on codifying a problem, I would realize that certain functional
systems needed to be rewritten. Unfortunately, the developing
complexity of the model was already causing my model to "crystallize"
into the flat plane real estate of the spreadsheet. Changing the wrong
stuff meant rewriting large portions of other good stuff.

In addition, almost anyone could use a spreadsheet regardless of training.
Consequently, the usual rules of good programming were ignored or
unknown altogether. Because of the loose structure of the environment,
slapdash models were often released to the wild, virus-like, where they
evolved and grew legs. I frequently found variations-on-a-theme
spreadsheets used out of the context from that originally intended.
Formulas were often replaced with a checkbook style series of numerical
values. Constants were frequently hard-coded into expressions with little
explanation about their meaning or units of measure. Few standards were
followed by users of the sheet.

1 of 16

The copy-paste/drag-copy method of propagating formulas also carried
with it the pernicious effect of propagating errors. Cell referencing of
formulas made it difficult to audit. Combine this with the penchant to
hard-code assumptions into formulas, and the persistence of errors
seemed forever out of control and compounding. Just two years ago I
discovered an error on the order of magnitude of $200 million in a legacy
spreadsheet used by a client for several years ("I guess that explains why
our forecasts were always so wrong."). I am not a man free of his own
programming peccadilloes. Just this past winter a particularly complex
spreadsheet assignment seemed forever error prone. I could not explain
why, even with nearly 20 years of modeling experience and all my
insistence on standardized approaches, my spreadsheet seemed to
produce what I am convinced were spontaneous errors [1].

In parallel to my use of spreadsheets, I learned more about the modeling
process in general as my career advanced. What I found was that
modeling was more than just a closed mathematical endeavor. It was a
social process as well. Models could help organizations learn and help
their constituents develop a shared understanding of a problem at hand.
Models help us to ask deeper questions and gain a deeper understanding
of the world we live in and the problems we face. I found that models
provided a useful language of discourse with people from disparate
backgrounds, perspectives and levels of understandings. But complexity
reared its ugly head again. As spreadsheet models became more complex,
the population of people who actually understood what a given model did
became reduced only to the author himself. Working as a group to
develop a spreadsheet and maintain consistent understanding of the
underlying model became nearly impossible.

Mitch Kapor, co-founder of Lotus Development Corp., the company that
spread the Lotus 1-2-3 spreadsheet like so many mold spores, remarks
that the spreadsheet is "...the equivalent of a single-cell organism, with
plenty of room to evolve" [2]. Indeed it is.

Analytica: Beyond the Spreadsheet
Analytica 4.1, a modeling environment developed and published by
Lumina Decision Systems (www.lumina.com), is designed to overcome
many of the shortcomings of both spreadsheets and procedural
programming languages. Approximately 12 years old, Analytica
possesses a wide and mature range of modeling and statistical analysis
capabilities. To understand them all requires the manual. Here I explain
the features of Analytica that have kept me as an active, enthusiastic and
productive user for those past 12 years.

Influence diagrams and hierarchical organization. One of the
persistent problems with any modeling environment to the non-authoring
user is the "forensic opacity" of the overall flow of logic from the
contextual framing of the problem at hand to the fixed assumptions
through intermediate calculations to the objective functions. Even the
author, who possesses the most familiarity with a model, may get lost in
particularly complex expressions within a workbook. The observer does

2 of 16

not always see clearly where a specific calculation is used next or why a
particular reference to a prior calculation is employed at all unless
extensive commenting is included. In fact, within a spreadsheet the only
real explicit explanation of logic and its flow through a spreadsheet are
the occasional user-supplied comments and the toggled trace precedents
and dependents (which don't always trace correctly, anyway, especially
with functions such as OFFSET). Analytica overcomes these problems
associated with explicitly revealing a model's logic by using an extended
form of the influence diagram.

To create the graphical structural elements of a model, a user simply
drags an appropriate object node from the tool bar to the palette [Figure
1], which works like a dynamic white board. One can drag-and-drop
objects on, move them around or delete them at will. Analytica
distinguishes the various nodes of an influence diagram by their shape
and color according to their functional use or class. One makes logical
connections among nodes by drawing an influence arrow from one
variable to another. In this way, the flow of logical precedence and
dependence is made obvious to both the user and observer at a primary
interface level. This provides another derivative benefit, as well,
associated with organizational communication.

Figure 1: Analytica's toolbar is located at the top of a drawing palette. It provides the
primary means for building, editing and navigating a model through the extended
influence diagram nodes. The traditional elements of an influence diagram (i.e.,
decision, variable, uncertainty, objective, respectively across the toolbar) are
retained, but new ones are added, such as the module, index, constant, function, text
and button.

To help one avoid accusations of plagiarizing Jackson Pollock's artwork,
Analytica allows you to move collections of variables into modules.
Modules function as a subgroup within an overall model and are used to
create contextual groupings, store scratch-pad calculations off to a side
or group arcane calculations that don't contribute to the greater level of
understanding of a model but are necessary, nonetheless. Double-clicking
a module opens a "lower" diagram to reveal the segregated nodes.

For the modeler, debugging and forensic analysis of a model is generally
as simple as following the arrows. For the non-authoring contributor or
user of a model, understanding the overall flow of logic requires the same
level of skill.

3 of 16

Figures 2 and 3: Double-clicking the dark blue Operations Module in the upper diagram
opens up a module that contains a lower layer of detail in a petroleum exploration
model.

Explicit documentation. Every variable or module within an Analytica
model is essentially an object with attributes. Among the editable
attribute fields are a variable are its title, identifier (the reference used in
formulas), units, description, definition (where the actual formulation of
a node is written) and user-defined fields as necessary. The object
window also displays linkable inputs and outputs to the given variable,
providing yet another way to audit the trail of functional performance. To
obtain access to this information, one simply double-clicks a node, and
its corresponding object window opens.

4 of 16

Figure 4: An object window contains all the information associated with a variable
represented as a node in the influence diagram.

Looking into the object window of a variable reveals a very important
aspect of code writing in Analytica — the formulation language is simply
an algebraic one. Formulas are created using the identifiers of other
nodes. One doesn't point to a specific value in a table unless one must. In
this sense, the benefits of both procedural languages and cell-referencing
of spreadsheets are employed.

Intelligent Arrays. One of the most powerful and important aspects of
Analytica is its proprietary use of Intelligent Arrays, which is based upon
the idea that an index (or a dimension) is an object by itself. But before I
explain this feature, recall how tables are currently created in a
spreadsheet.

A spreadsheet is a two-dimensional space. Tables are typically composed
of row and column headers. The headers are elements across a dimension
of concern, and the dimensions are set orthogonally to each other. If one
needs to build multi-dimensional calculations, the tables must either be
set in a contiguous arrangement or across multiple sheets. In any case,
the larger the tables becomes, the more difficult it is to update and
extend the range of row or column dimensions. To compound the
difficulties, once the extensions are made, the internal formulas also have
to be copied across, further increasing the opportunities for the inclusion
and propagation of errors.

In Analytica, indexes represent the analogs of the row and column
dimensions of spreadsheets. Each index can either be a numerical
sequence or a list of numbers or text elements. These index elements
correspond to row and column headers of spreadsheets. Indexes are
defined independently of their use within a table; consequently, once an
index is made, it can be reused again and again for different calculations
or to construct multiple input tables. Indexes are the orthogonal bases of
tables, and tables can contain up to 15 indices (essentially, a
15-dimensional hypercube). If an index is extended, the tables on which
it is based are also automatically extended, and calculations based on the
extended tables or base indexes are appropriately extended as well.

When one needs to reference subsets or slices of arrays, Analytica uses

5 of 16

both a positional and a named reference approach to get at the required
data. In spreadsheets, one spends a lot of time writing non-obvious code
with INDEX, MATCH, OFFSET and ADDRESS for these types of
exercises, or falls back on error-prone specification of individual cell
references. One can almost forget being sure if the code is correct if the
arrays are multidimensional. In Analytica, if one confirms that the code is
right in a couple cases, it is most likely right for the entire array.

Figure 5: A three-dimensional result table indexed by Salesmen, Revenue to Sales,
and Time. To use all the values in the table at once in another calculation, simply refer
to the identifier of the node that creates this table: Salesmen. If you only need one
slice of the table, say the $15/unit plane, use a named reference, like
Salesmen[Revenue_to_sales=15], or a positional reference, like Slice(Salesmen,
Revenue to sales, 2.

The capability for this latter feature derives out of Analytica's
employment of array abstraction. Array abstraction allows a modeler to
operate mathematically on an entire table without writing formulas that
reference each element in a table or without writing procedural iteration
routines, unless specific individual cell references are necessary.
Operations across tables take place on a cell-by-cell basis, with the array
abstraction logic supplying index values as required. For example, a
scalar operation on a table preserves the indices. Operations among
tables composed of the same dimensions line up the operations along the
same indexes. And operations among tables composed of different
indexes increase the dimensionality of the result as the union of the
indexes with the operations occurring in the expected tuple-to-tuple
manner. The several beneficial results are that time to write code is
significantly reduced, copying errors are significantly reduced, and
debugging time is reduced. In fact, the size and length of spreadsheets or
procedural language models are typically reduced by one to two orders
of magnitude [3]. I estimate that the time I spend writing Analytica
models is one quarter to one half of that devoted to similarly complex
spreadsheets. The ultimate benefit for modelers of sufficient experience
is that their efficiency in converting conceptual analysis into results is
greatly increased.

6 of 16

Figures 6 and 7: To pivot a table, click an index header, and choose the name of the
index to replace the current header. The bottom table shows the upper table flipped
around.

Dynamic simulation. The traditional influence diagram convention
requires that the arcs in the node-to-node flow of logic imply a
time-forward-only process. For the most part, Analytica follows this
convention, but it also allows for a powerful twist: feedback loops are
permitted and handled in a logical manner. Modelers are not just
constrained to writing static, closed-form formulas as long as at least one
of the formulas possesses a time-lagged reference to itself or some other
formula within the loop. This permits modeling of time-based dynamic
systems without having to learn a special new language of stocks and
flows associated with other dynamic system simulation environments or
using before- and end-state rows and columns in a spreadsheet.

7 of 16

(Mostly) instantaneous results. Every decision involves a trade-off. The
decision to use a spreadsheet allows for numerical expression almost
instantaneously (regardless of whether the expression is even right), but
logical structure is hidden from immediate view. Logic must be inferred
from analysis of cell references and commenting, if the latter is supplied.
Analytica takes the opposite route, opting instead to make logical flow
and expression explicit while requiring numerical expression to be called.
Most of the time, calculation is essentially instantaneous, but there are
some caveats to be aware of related to large data structures.

8 of 16

Figures 8 and 9: The influence diagram above is an implementation of Jay W.
Forrester's sales effectiveness model discussed in "Principles of Systems." The gray
arrows indicate dynamic feedback. The bottom chart demonstrates that the
formulation has captured the essence of a dynamic response.

Again, Analytica flexes its muscles in the way it presents results. The
user can opt to see results in tabular format (like a spreadsheet) across a
number of preset statistical options or in graphical format. The leverage
of Intelligent Arrays allows a user to pivot and navigate multi-
dimensional outputs around the resultant base indexes similar to the way
pivot tables are intended to operate, but Analytica's approach is more
logically transparent and instantaneous.

Embedded Monte Carlo. Including probabilistic simulation in
spreadsheets often requires the use of third-party plug-ins. But problems
lie here as well. For example, not all spreadsheet models that employ
plug-ins work consistently across different versions of the plug-in that
may be present among the different analysis and planning departments of
a company. Furthermore, plug-ins provide only partial access to
commonly useful intermediate statistics. Consequently, the analyst must
often resort to supplying another layer of programming to get to these
statistics.

Analytica installs with a fully embedded Monte Carlo engine instead of
relying on separate plug-ins. In Analytica, variables used to model
uncertainty simply call the required functional distribution (whether one
supplied by the system or one provided as a user-defined function), and
the user provides either functional links or explicit quantities to satisfy
the parameters required by the function. After the call to calculate, if a
user needs to see the sample space of a given simulation, he simply
switches to the Sample view. Other commonly useful statistics (mid,
mean, statistics, probability bands, probability density, cumulative
probability, sample) are also available by switching to the appropriate
view, but if needed, a full suite of statistical functions are available for
more advanced analysis. Unlike many plug-ins, the simulation engine is
backward compatible with all prior versions of Analytica.

Because the results of simulation are also expressed in terms of
Intelligent Arrays, each uncertain node is capable of producing samples
of a desired distribution independently along a given index element.

9 of 16

Figures 10 and 11: Graphs and tables of their underlying data content can be
instantaneously switched back and forth by clicking the table or graph buttons in the
upper left corner of the result. In this case, the Salesman graph above reveals its
numerical basis.

Connection to data sources. Analytica doesn't stand alone and isolated
from the data warehoused in disparate resources. Analytica can publish
data to and subscribe to data from one's favorite Office applications (let's
be honest, no one really has a favorite Office application, but there may
be one that you use mostly for reporting) through OLE to maintain
published reports. The Enterprise version of Analytica can use grab data
from or push data to existing ODBC-enabled databases through SQL
commands for further processing and distribution. In this way, Analytica
can work quite well to enhance the use of an organization's existing
spreadsheets as opposed to replacing them. In fact, spreadsheets can
continue to be used as effective resources for data collection.

Organizational communication. Analysis conducted within group efforts
often experience delays in both development and shared understanding
of the implications of the models employed to gain insights into
problems. Typically, after problem framing, an analyst goes off to his
coding cave where development ensues along with the steps of quality
assurance, debugging, and translation of results to a portable format.
Once results are observed and discussed, the process may go through
several iterations. In my own consulting work with Analytica, I have
been able to productively map out and code large sections of models with
clients in session. The most successful engagement of this sort occurred
with Bechtel-SAIC [4] in which the analysis team produced a very
complex fee adequacy model in a fraction of the estimated time proposed
for development with spreadsheets and a Monte Carlo plug-in. While in
such working sessions, we were able to get immediate feedback on the
logical progression of the model, as well as bring everyone on the
analysis team to a similar degree of understanding of how the actual

10 of 16

nuts-and-bolt of the model worked. This provided a reasonable degree of
insurance against failing to meet the modeling goal due to a possible
force majeure departure of the primary modeler. I do not think this would
have been possible in many other environments other than Analytica's
graphical influence diagram and hierarchical interface.

Beyond promoting analysis team understanding, Lumina provides several
avenues to share the insights to be derived from one's modeling efforts
with those who are not yet Analytica users: Player and Power Player,
Analytica Decision Engine and the forthcoming Analytica Web
Publisher.

11 of 16

12 of 16

Figures 12, 13 and 14: A robust Monte Carlo engine provides the samples for
simulations. Clicking the uppermost button in the upper left corner of a result window
provides access to a number of ways to view statistical interpretations of data.
Clicking the table button reveals the underlying numerical data.

The simplest means is to distribute the free Analytica Player or Power
Player. Both of these versions allow non-modelers to view model logic,
make changes to the inputs and observe outputs. The more basic Player
version does not allow persistent changes to inputs between user
sessions. The Power Player preserves input changes between working
sessions as well as maintains the Enterprise-level features of the most
advanced desktop version of Analytica [5].

The Analytica Decision Engine (ADE) is a server application that
provides connectivity through Web browser interfaces or other
applications to Analytica models and databases. With this "glueware," an
organization can create and distribute custom-made applications that
support operations, sales, engineering and planning groups.

The latest advancement in ADE technology is the Analytica Web Player.
With this tool, models developed in Analytica can be published
immediately to a Web browser through a Shockwave GUI. The Web
Player exposes all of the features of the desktop model (e.g., influence
diagram, object windows, functional inputs, tabular and graphical
outputs) to a subscribing user who has to know little more than how to
follow arrows, point and click in order understand and use a model.

A Few Caveats
There are a few issues to be aware of as one begins to use Analytica. The
ease with which Analytica permits model building often opens the door
to the exuberant addition of complexity. The inclination to introduce
more complexity than is warranted has to be resisted. Follow Einstein's
dictum: "[models] should be as simple as possible, but no simpler."

Conceptual complexity presents its own problems, but in Analytica,
high-dimensional complexity (i.e, nodes composed of more than three
indexes) and large index sizes can cause memory and PC processing
resources to be taxed to the limit of standard PC capacities. These
limitations can often be overcome with proper problem framing and
model planning, but just in case, it helps to have as much RAM as
possible. The faster one's processor performs, the better, too. If the data
structures in one's model do not fit into available RAM, an attempt to
calculate will generate an error message. In previous versions, the
software would hang. Analytica does give some support to working
around memory management problems, but this can be tiresome at times.
Unfortunately, there is probably no clean seamless solution to this
problem, without substantial compromise to the tool's functionality.

Lumina recently improved Analytica's graphing capabilities; however,
there are many types of graphs that are available in common
spreadsheets that are not yet available in Analytica. Of course, many of
these graph variations in spreadsheets are simply chart junk, but if one
must be used, the data can always export to a spreadsheet (or your

13 of 16

favorite graphing software) where the graph variants can be produced as
desired.

Conclusion
Feral spreadsheets will likely always run amok, if for no other reason
than almost anyone can plug numbers into an open spreadsheet. The
same might be said of Analytica, but at least a modicum of training is
required to implement the simplest of Analytica models. Many of the
shortcomings of spreadsheets can be overcome within organizations by
implementing consistent design procedures and standards. Similar
standards should be employed within any modeling environment,
including Analytica.

Analytica will not solve all the issues associated with modeling or make
every model perfectly transparent to all observers. But it does provide
tremendous advancements over the current state of affairs. By providing
a more transparent depiction of model logic through the use of influence
diagrams, model logic can be audited quickly as well as communicate
model rationale to broader audiences. Analytica also reduces the
programming effort required to produce insights through its use of
Intelligent Arrays, array abstraction and integrated Monte Carlo engine.
As a result, analysts are freer to focus more on model exploration and its
implications than writing code. In conclusion, if you want to evolve a
step beyond your current model development and quality assurance time
requirements, error rate and auditable transparency issues associated
with spreadsheet and procedural language models, Analytica provides a
great environment to do so.

Product Information

Analytica 4.1 is available from Lumina Decision Systems
Address: 26010 Highland Way,
Los Gatos, CA 95033-9758, USA
Phone: 650-212-1212
Fax: 650-240-2230
URL: www.lumina.com

Commercial Pricing:

Analytica 4.1 Player: Free download. Lets you review
and run models and change inputs, but not edit
structure or save changed model.
Analytica 4.1 Professional: $1,295
Analytica 4.1 Enterprise: $2,495. Supports ODBC
database access, huge arrays, hiding sensitive data or
formulas, time profiling and more.
Analytica 4.1 Optimizer: $3,995. Adds powerful linear
and nonlinear solvers.
Analytica Decision Engine: $6,000. Runs models on a
server, and offers an interface API for integration with
other applications.
Analytica Web Player: Price varies. Runs models on a

14 of 16

server via Web browser

Academic Pricing and Programs:
Software licenses for academic use are about half the
commercial prices.
Analytica in the Classroom: Free for professors and students
for use in college classes.

Training and Consulting:
Lumina offers two-day, hands-on training classes.
Consulting and coaching: Via Web conference and in person.
To learn more: Free live Webinars are offered every
Wednesday at 10 a.m. (PDT)

Vendor's Comments

Editor's note: It is the policy of OR/MS Today to allow
developers of reviewed software an opportunity to clarify
and/or comment on the review article. Following are comments
by Max Henrion, chief executive officer, Lumina Decision
Systems.

We appreciate the reviewer's enthusiasm for Analytica. His
experience that he can develop Analytica models in a quarter
to half the time needed for spreadsheets of equivalent
complexity is in line with what other users tell us.

In response to the reviewer's caution that it is easy to make
Analytica models so large that they exhaust computational
resources, we would add that its Intelligent Arrays features
also make it much easier than other modeling tools to vary
the level of detail and so adapt the model size to computer
resources available. For example, you can easily extend or
reduce an index (dimension) of a model — say, change the
time horizon, or change aggregation between months,
quarters or years, or change geographic regions — without
having to change formulas that work over those indexes. You
can also easily add or remove indexes from an array. In this
way, you can actually do sensitivity analysis to see how the
level of detail affects precision, and so choose the most
appropriate level of aggregation — something that is
impractical with spreadsheets or conventional modeling
languages.

Robert D. Brown III is a senior consultant with Decision Strategies,
Inc. The author thanks colleagues and fellow Analytica users Eric
Johnson and Sean Hester for their invaluable edits, comments and
suggested text.

References

Raymond Panko provides an excellent discussion on the frequency of spreadsheet
errors and their causes in his paper, "What We Know About Spreadsheet Errors,"
http://panko.shidler.hawaii.edu/SSR/Mypapers/whatknow.htm.

1.

15 of 16

Scott Leibs, 2003, "Spreadsheets forever: On the eve of its silver anniversary, the
electronic spreadsheet remains golden, co-creator Dan Bricklin explains why,"
CFO: Magazine for Senior Financial Executives, Fall 2003,
http://findarticles.com/p/articles/mi_m3870/is_12_19/ai_108198588.

2.

Morgan, M. Granger, and Henrion, Max, 1990, "Analytica: A Software Tool for
Uncertainty Analysis and Model Communication Uncertainty in Quantitative Risk
and Policy Analysis," chapter 10 of "Uncertainty: A Guide to Dealing with
Uncertainty in Quantitative Risk and Policy Analysis," Cambridge University
Press, New York, reprinted in 1998.

3.

www.lumina.com/casestudies/BechtelSAIC.htm4.
www.lumina.com/ana/editiondescriptions.htm5.

OR/MS Today copyright © 2008 by the Institute for Operations Research and the
Management Sciences. All rights reserved.

Lionheart Publishing, Inc.
506 Roswell Rd., Suite 220, Marietta, GA 30060 USA
Phone: 770-431-0867 | Fax: 770-432-6969
E-mail: lpi@lionhrtpub.com
URL: http://www.lionhrtpub.com

Web Site © Copyright 2008 by Lionheart Publishing, Inc. All rights reserved.

16 of 16

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

